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Abstract— This paper provides a theoretical framework for1

understanding the performance of reconfigurable intelligent sur-2

face (RIS)-aided massive multiple-input multiple-output (MIMO)3

with zero-forcing (ZF) detectors under imperfect channel state4

information (CSI). We first introduce a low-overhead minimum5

mean square error (MMSE) channel estimator, and then derive6

and analyze closed-form expressions for the uplink achievable7

rate. Our analytical results demonstrate that: 1) regardless of8

the RIS phase shift design, the rate of all users scales at least on9

the order of O (log2 (MN )), where M and N are the numbers10

of antennas and reflecting elements, respectively; 2) by aligning11

the RIS phase shifts to one user, the rate of this user can at12

most scale on the order of O �
log2

�
MN 2

��
; 3) either M or13

the transmit power can be reduced inversely proportional to N ,14

while maintaining a given rate. Furthermore, we propose two low-15

complexity majorization-minimization (MM)-based algorithms16

to optimize the sum user rate and the minimum user rate,17

respectively, where closed-form solutions are obtained in each18

iteration. Finally, simulation results validate the accuracy of all19

derived analytical results. Our simulation results also show that20

the maximum sum rate can be closely approached by simply21

aligning the RIS phase shifts to an arbitrary user.22

Index Terms— Reconfigurable intelligent surface (RIS), intel-23

ligent reflecting surface (IRS), massive MIMO, majorization-24

minimization (MM), ZF, imperfect CSI.25
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I. INTRODUCTION 26

MASSIVE multiple-input multiple-output (MIMO) has 27

been widely recognized as a cornerstone technology for 28

the fifth-generation (5G) and beyond wireless communications 29

[2]–[8]. Thanks to its spatial multiplexing gains, massive 30

MIMO system can simultaneously provide high quality of ser- 31

vice for multiple users on the same time-frequency resource. 32

Massive MIMO also has some other appealing properties, e.g., 33

the transmit power can be reduced inversely proportional to 34

the number of antennas without sacrificing the achievable rate. 35

However, conventional massive MIMO still has some draw- 36

backs. The first one is the blockage problem. Due to the 37

complex environment and user mobility, communication links 38

may be blocked, in which case the channel strength could 39

be severely degraded. Another problem is the high cost and 40

energy consumption of the active radio-frequency (RF) chains. 41

Massive MIMO commonly employs hundreds of antennas, 42

each of which will be connected to a RF chain. Hence, this 43

system incurs high hardware cost and energy consumption. 44

The recently developed technology of reconfigurable intel- 45

ligent surfaces (RISs) [9]–[14], also referred to as intelligent 46

reflecting surfaces (IRSs), is a promising solution for tackling 47

the above two issues in massive MIMO systems. On the one 48

hand, since the RIS is a small, thin and light surface, it can 49

be flexibly deployed at a carefully selected location with a 50

favorable propagation environment. Therefore, RISs enable 51

additional high-quality communication paths to overcome the 52

blockage problem. On the other hand, RISs are comprised of 53

low-cost passive reflecting elements, which are much cheaper 54

than active RF chains. Therefore, it is envisioned that RISs are 55

beneficial for improving the energy efficiency of conventional 56

massive MIMO systems. 57

Due to these appealing features, RIS-aided massive MIMO 58

has gained growing research interests with many activities, 59

focusing on various applications and different perspectives, 60

such as channel estimation [15], dual-polarized transmission 61

[16], millimeter wave (mmWave) communications [17], hard- 62

ware impairments [18], multi-RISs co-design [19], cell-free 63

systems [20], antenna selection [21], and power scaling law 64

analysis [22]–[24]. 65

To fully understand the potential of RISs, it is 66

essential to draw theoretical insights from information- 67

theoretical expressions, which rigorously demonstrate the 68
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impact of the various system parameters. Fundamental69

information-theoretical expressions for conventional massive70

MIMO systems have been provided in, e.g., [3]–[5]. It was71

shown that the achievable rate of conventional massive MIMO72

systems with M antennas scales on the order of O (log2 (M)).73

This naturally raises the question what is the corresponding74

scaling law for massive MIMO systems with the integra-75

tion of RISs. To answer this question, explicitly analytical76

rate expressions are required. It has already been shown77

that in RIS-aided single-user systems with N reflecting ele-78

ments, the achievable rate could scale as O (
log2

(
N2

))
[11],79

[25], or even O (
log2

(
N4

))
[26] if two RISs cooperate.80

Similar scaling orders were also reported for some other81

RIS-aided communication scenarios, such as the RIS-aided82

relay [27], RIS with scattering parameter analysis [28], and83

RISs with hardware impairments [29], [30]. However, these84

works focused on the simple single-user case, and cannot be85

easily generalized to multi-user systems.86

In fact, it is challenging to provide an insightful analysis87

for the rate scaling order of RIS-aided multi-user systems.88

This is because the resulting signal-to-interference-plus-noise89

ratio (SINR) expressions are more complicated and more90

involved than the interference-free signal-to-noise ratio (SNR)91

expressions for single-user systems, and also because the92

optimal RISs passive beamforming vectors cannot be given in93

closed form in the case of multiple users. Some initial results94

were provided in [23] and [24] by considering RIS-aided95

massive MIMO with simple maximal ratio combining (MRC).96

For uncorrelated Rayleigh fading channels, it was proved that97

the achievable rate scales only as O (log2 (1)) with respect to98

N . This is due to the severe multi-user interference, since99

the common RIS-base station (BS) channel is used by all100

users. To tackle this issue, most recently, the authors in [31]101

firstly revealed that a rate scaling order O (log2 (MN)) can102

be achieved with zero-forcing (ZF), which demonstrates the103

huge potential of ZF detectors in RIS-aided massive MIMO104

systems.105

However, there are two main limitations in [31]. Firstly,106

ideal channel state information (CSI) of the aggregated chan-107

nel including the superimposition of the direct channel and the108

reflected channel, was assumed. The impact of pilot overhead109

and channel estimation errors on the system performance are110

still unknown. Whether the rate scaling order obtained based111

on perfect CSI still holds in the presence of imperfect CSI112

deserves further study. Secondly, the authors in [31] only113

considered some initial performance analysis and RIS phase114

shift optimization, which lacks further insightful analysis.115

Therefore, this work aims to provide an analytical framework116

to gain an in-depth analysis for the performance of RIS-aided117

massive MIMO systems with ZF detectors under the realistic118

assumption of imperfect CSI.119

Specifically, in this work, we first propose a low-overhead120

channel estimation scheme, in which the required pilot length121

is independent of N . We next perform a comprehensive122

theoretical analysis to reveal the explicit rate scaling order123

and answer the fundamental question whether the RIS-aided124

massive MIMO with ZF detectors is promising or not.125

Finally, based on majorization-minimization (MM) algorithms, 126

we respectively optimize the RIS phase shifts to maximize 127

the sum user rate and the minimum user rate. The detailed 128

contributions are summarized as follows. 129

1) Low-overhead channel estimation: We propose a mini- 130

mum mean square error (MMSE)-based method to estimate the 131

aggregated channel in the systems, which is a superimposition 132

of cascaded RIS channels and the direct channels. The length 133

of pilots only needs to be no smaller than the number of users. 134

We also analyze the impacts of various system parameters on 135

the mean square error (MSE). 136

2) Reveal rate scaling orders: We derive the closed-form 137

ergodic rate expression and its insightful lower and upper 138

bounds. The lower bound shows that the data rates of all 139

users are guaranteed to be on the order of O (log2 (MN)), 140

regardless of the RIS phase shift design. The upper bound 141

shows that the data rate of a specific user can be on the order 142

of O (
log2

(
MN2

))
, if the RIS phase shift is designed to align 143

its beamforming to that user. We also demonstrate that these 144

two analytical results are robust to RIS phase shift quantization 145

errors. 146

3) Answer the question whether the considered system is 147

promising or not: Based on the analytical results, we prove 148

that RIS-aided massive MIMO systems with ZF detector are 149

promising for three applications. It can provide ultra-high 150

network throughput according to the high data rate scaling 151

order for all users; it can help reduce M inversely proportional 152

to N without sacrificing the data rate, which helps avoid 153

the power hungry RF chains and is promising for green 154

communications; it can help all users reduce their transmit 155

power inversely proportional to N while maintaining high data 156

rates, which is promising for IoT applications. 157

4) Low-complexity RIS optimization: We design the RIS 158

phase shifts to maximize the sum user rate and minimum user 159

rate, relying on the MM algorithm with closed-form solution 160

in each iteration. We also show that aligning RIS phase shifts 161

to an arbitrary user is an effective heuristic approach for 162

maximizing the sum user rate. In addition, we demonstrate that 163

maximizing the sum user rate can also ensure a high minimum 164

user rate. 165

The rest of this paper is organized as follows. Section II 166

describes the system and channel model. Section III proposes 167

the MMSE channel estimation scheme. Section IV theoret- 168

ically proves that RIS-aided massive MIMO is promising 169

with ZF detectors. Section V proposes the MM algorithm for 170

solving the sum user rate and minimum user rate maximization 171

problems. Section VI provides extensive simulations to verify 172

the correctness of analytical results and the effectiveness of 173

proposed optimization algorithms. Finally, Section VII con- 174

cludes this work. 175

Notations: Boldface lower case and upper case letters denote 176

the vectors and matrices, respectively. The inverse, conjugate 177

transpose, conjugate and transpose of matrix X are denoted 178

by X−1, XH , X∗, XT , respectively. The (m,n)-th and 179

(m,m)-th elements of the matrix are represented by [X](m,n) 180

and [X]mm. X � 0 and X � 0 respectively denote that X 181

is definite positive and semi-positive. O denotes the standard 182

Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 17,2022 at 18:42:40 UTC from IEEE Xplore.  Restrictions apply. 



3012 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 10, OCTOBER 2022

Fig. 1. Massive MIMO systems assisted by an RIS.

big-O notation. λmax(X) and ∠X denote the maximal eigen-183

value and the phase of matrix X. E{·} and Cov{·} denote the184

mean and covariance operators.185

II. SYSTEM AND CHANNEL MODEL186

As shown in Fig. 1, the uplink transmission of an187

RIS-assisted massive MIMO system is considered. The con-188

sidered system consists of K users with a single antenna,189

a BS with M > K antennas,1 and an RIS with N reflecting190

elements. Besides, we assume a quasi-static channel model191

with each channel coherence interval (CCI) spanning τc time192

slots. In each CCI, the instantaneous channel between the users193

and the RIS, and that between the RIS and the BS are denoted194

by H1 ∈ CN×K and H2 ∈ CM×N , respectively. Then,195

the cascaded user-RIS-BS channel is G = H2ΦH1, where196

Φ = diag
{
ejθ1 , . . . , ejθN

}
is the RIS phase shift matrix.2197

Meanwhile, the direct channels between the users and the198

BS are denoted by D ∈ CM×K . Finally, in each CCI, the199

instantaneous aggregated channels from the users to the BS200

are given by Q = G + D ∈ CM×K .201

It has been shown in [24] that it is better to place an202

RIS close to the users rather than close to the BS in the203

massive MIMO systems. Therefore, in this paper, we assume204

that the RIS is deployed on the facade of a tall building in the205

proximity of the users, as illustrated in Fig. 1. Since the RIS206

has a certain height and the distance between each user and the207

RIS is short, the strength of the non-line-of-sight (NLoS) com-208

ponents is much weaker than that of the line-of-sight (LoS)209

components for the user-RIS channels [34]. Accordingly, user-210

RIS channels are expected to be LoS-dominant. For analytical211

tractability, we assume that the user-RIS channels are purely212

LoS as follows3
213

H1 =
[√
α1 h1, . . . ,

√
αK hK

]
, (1)214

where αk, ∀k is the large-scale path loss factor for user k, and215

hk ∈ CN×1 is the deterministic LoS channel between user k216

and the RIS.217

1If M ≤ K , user scheduling methods can be applied. In each time slot,
we can select K̃ = M − 1 users to be served. As a result, the condition
M > K̃ holds, and all conclusions obtained in the rest of this paper still
hold by substituting K with K̃.

2For analytical tractability, unit independent amplitudes are assumed in this
work. The incorporation of more practical amplitude models, as used in [32],
[33], will be left for our future work.

3The gap between the data rate achieved by a purely LoS channel and that
achieved by a LoS-dominant channel (i.e., a Rician fading channel with a
relatively large Rician factor) is negligible, as shown in [24], [25], [35].

Since the RIS is installed close to the users, it may be 218

located far away from the BS. Therefore, both LoS and 219

NLoS transmission paths would exist in H2. As a result, 220

we characterize the RIS-BS channel by Rician fading, which 221

is expressed as 222

H2 =
√
β/(δ + 1)(

√
δ H2 + H̃2), (2) 223

where β is the path loss factor, and δ is the Rician factor which 224

represents the ratio between the power of LoS component 225

H2 and the power of NLoS component H̃2. The elements of 226

H̃2 are independent and identically distributed (i.i.d.) complex 227

Gaussian random variables with zero mean and unit variance. 228

For a rich-scattering environment, there is δ → 0 and then the 229

RIS-BS channel reduces to a Rayleigh fading channel contain- 230

ing only NLoS paths. For a scattering-free environment, there 231

is δ →∞ and then the RIS-BS channel is purely LoS. 232

Finally, since the users might be located far away from the 233

BS, and rich scatterers (trees, cars, buildings and so on) are 234

distributed on the ground, the channels between the users and 235

the BS are assumed to be Rayleigh fading as in [25]. Thus, 236

we have 237

D � [d1, . . . ,dK ] = D̃Ω1/2, (3) 238

where dk =
√
γkd̃k is the channel between user k and 239

the BS with large-scale fading coefficient γk and small-scale 240

fading vector d̃k comprised of i.i.d. complex Gaussian random 241

variables with zero mean and unit variance. Here, Ω = 242

diag {γ1, . . . , γK} and D̃ = [d̃1, . . . , d̃K ]. 243

The two-dimensional uniform rectangular array (URA) 244

model is considered in this paper to characterize the LoS 245

channels [11]. For an L×1 array response vector aL, we have 246

aL (ϑa, ϑe) = ãLx (sinϑe sinϑa)⊗ ãLy (cosϑe) , (4) 247

where ϑa and ϑe denote the azimuth and elevation 248

angles of arrival (AoA) or the corresponding angles 249

of departure (AoD), L = Lx × Ly, and ãb (c) � 250

[1, . . . , ej2π d
λ (b−1)c]T , b ∈ {Lx, Ly}. Besides, it is worth 251

noting that aH
L (ϑa, ϑe)aL (ϑa, ϑe) = L. 252

Now, based on the definition of the array response vector 253

in (4), we can respectively express the LoS channels hk and 254

H2 as follows 255

hk = aN

(
ϕa

k,r , ϕ
e
k,r

)
, 1 ≤ k ≤ K, (5) 256

H2 � aMaH
N = aM (φa

r , φ
e
r)a

H
N (ϕa

t , ϕ
e
t ) , (6) 257

where ϕa
k,r, ϕ

e
k,r denote the AoA from user k to the RIS 258

and φa
r , φ

e
r (ϕa

t , ϕ
e
t ) denote the AoA (AoD) from the RIS to 259

the BS.4 260

III. CHANNEL ESTIMATION 261

In the considered system, there are two kinds of 262

channel parameters, namely the fast varying small-scale/ 263

instantaneous parameters (H̃2 and D̃) and the slowly varying 264

4Based on the adopted system model, this work serves as a useful prelime-
nary tool to theoretically understand the properties and potentials of RIS-aided
massive MIMO systems based on ZF detectors. For the extension to more
realistic and complex models, machine learning techniques could be applied,
which will be left for our future work.
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large-scale/statistical parameters (AoA, AoD, path-loss factors,265

and Rician factors). Since the large-scale parameters vary266

much slower than the small-scale parameters, they are easier267

to measure. Specifically, the AoA and AoD can be calculated268

based on location information, and the path-loss and Rician269

factors can be measured by environmental sensors. Besides,270

since the required frequency of estimation of large-scale para-271

meters is much lower than that of small-scale parameters, the272

corresponding overhead can be ignored. Therefore, only the273

overhead and estimation of the small-scale channel parameters274

are studied in this paper.275

The small-scale channel parameters are estimated by the276

BS using a pilot-based method. For conventional massive277

MIMO systems, only the M × K user-BS direct channel278

D needs to be estimated, and the minimum pilot sequence279

length is τ = K . In RIS-aided massive MIMO systems,280

the required pilot overhead could be prohibitive due to the281

extremely large channel dimension of M ×N in the RIS-BS282

link. Since both M and N could be large in the considered283

system, a low-overhead channel estimation scheme is highly284

desirable. To reduce the pilot overhead, we extend a classic285

channel estimation method from conventional massive MIMO286

systems [4] to the considered system, by estimating only the287

instantaneous aggregated user-BS channel Q ∈ CM×K . As a288

result, the minimum pilot sequence length is still τ = K ,289

independent of M and N . Meanwhile, the estimated channel290

is sufficient for the design of ZF detectors at the BS.5291

Specifically, in each CCI, the K users are assigned mutually292

orthogonal pilot sequences with length τ ≥ K . The pilot293

sequence of user k is denoted by sk ∈ Cτ×1. Let S =294

[s1, . . . , sK ], where SHS = IK due to the orthogonality.295

Then, at the beginning of each CCI, τ time slots are used296

for the K users to transmit the pilot signal S to the BS.297

The received M × τ pilot signal at the BS can be given298

by Yp =
√
τpQSH + N, where p is the common average299

transmission power of each user during the channel estimation300

stage, and N is the noise matrix whose elements are i.i.d.301

Gaussian variables following CN (0, σ2). Then, we can obtain302

the observation vector for the channel of user k by multiplying303

the term 1√
τpsk to Yp, as follows304

yk
p = 1√

τpYpsk = qk + 1√
τpNsk, (7)305

where qk , the k-th column of Q, denotes the aggregated306

channel of user k.307

Lemma 1: Channel qk and noise 1√
τpNsk in (7) are com-308

plex Gaussian distributed, where qk ∼ CN (
√

αkβδ
δ+1 H2Φhk,309 (

N αkβ
δ+1 + γk

)
IM ), and 1√

τpNsk ∼ CN (0, σ2

τpIM ).310

Proof: Please refer to Appendix A. �311

From Lemma 1, it is seen that the considered channel312

is still Gaussian distributed as conventional massive MIMO313

systems [7, Eq. (1)], but with the different mean and variance.314

Therefore, we can still apply the well-known MMSE estimator315

to obtain the channel estimate of qk.316

5We note that the proposed channel estimation method is not sufficient for
instantaneous CSI-based RIS design since the small-scale parameters inside Q
are not estimated. However, this method is sufficient for statistical CSI-based
RIS design which only requires knowledge of the large-scale parameters.

Theorem 1: Based on the observation vector, the MMSE 317

estimate of channel qk is given by 318

q̂k =

√
αkβδ

δ + 1
H2Φhk 319

+ κk

(√
αkβ

δ + 1
H̃2Φhk+dk+

1√
τp

Nsk

)
, 320

(8) 321

where κk =
N

αkβ

δ+1 +γk

N
αkβ

δ+1 +γk+ σ2
τp

∈ (0, 1). Denote the estimation 322

error as ek = qk − q̂k , where the error ek is independent 323

of the estimate q̂k. Then, the MSE matrix for the channel 324

estimation is 325

MSEk = E
{
ekeH

k

}
= 1

1

N
αkβ
δ+1 +γk

+ τp

σ2
IM � εkIM . (9) 326

Proof: Please refer to Appendix B. � 327

Based on (9), the MSE can be calculated as MSEk = 328

Tr {MSEk} = M
1

N
αkβ
δ+1 +γk

+ τp

σ2
. Clearly, the MSE is a decreas- 329

ing function of τ , p, and δ, but an increasing function of M , 330

N , αk, β, γk, and σ2. This is because τp
σ2 represents the pilot 331

SNR, and increasing its value improves the estimation quality. 332

δ is the Rician factor, and increasing its value makes the 333

RIS-aided channels more deterministic and therefore decreases 334

the estimation error. Also, the increase of N introduces more 335

communication paths between the users and the BS, which 336

also increases the estimation error. 337

Note that in the absence of the RIS (i.e., αk = β = 0, ∀k) or 338

for a purely LoS RIS-BS channel (δ → ∞), the MSE matrix 339

in (9) reduces to MSEk = γk

1+ τp

σ2 γk
IM , which is the same 340

as for conventional massive MIMO systems [4]. Let Q̂ = 341

[q̂1, . . . , q̂K ] denote the estimated aggregated channel of the 342

K users. Then, based on (8), we have 343

Q̂ =

√
βδ

δ + 1
H2ΦH1 +

√
β

δ + 1
H̃2ΦH1Υ 344

+ D̃Ω1/2Υ +
1√
τp

NSΥ, (10) 345

where Υ = diag {κ1, . . . , κK}. 346

IV. ERGODIC RATE ANALYSIS 347

In the transmission phase, the K users transmit symbols 348

x = [x1, . . . , xK ]T where x ∼ CN (0, IK), and the received 349

signal at the BS can be expressed as 350

y =
√
pQx + n =

√
pQ̂x +

√
pEx + n, (11) 351

where n ∼ CN (
0, σ2IM

)
and E � [e1, . . . , eK ] = Q − Q̂. 352

As in [4], [5], we assume that each user has a common 353

average data transmission power p for simplicity, and this 354

power is the same as that used in the channel estimation stage. 355

To eliminate the multi-user interference, the BS adopts the 356

linear ZF detectors A = Q̂(Q̂HQ̂)−1 = [a1, . . . ,aK ], which 357

leads to AHQ̂ = IK .6 Then, in each CCI, the BS detects the 358

6Even though ZF is a sub-optimal solution, it has low implementation
complexity with respect to the number of antennas. Therefore, it is suitable
for the considered massive MIMO system.
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received signal as follows359

r = AHy =
√
px +

√
pAHEx + AHn, (12)360

whose k-th entry can be further expressed as361

rk =
√
pxk +

√
p
∑K

i=1
aH

k eixi + aH
k n. (13)362

A. Achievable Data Rate363

Based on (13), the accurate ergodic rate of user k can now364

be given by365

Rk = τo E

{
log2

(
1 +

p

p
∑K

i=1

∣∣aH
k ei

∣∣2 + σ2
∥∥aH

k

∥∥2

)}
,366

(14)367

where a factor τo � τc−τ
τc

captures the rate loss caused by pilot368

overhead, and the expectation is taken over random channel369

components in Q̂. It is difficult to derive an exact expression370

of (14) due to the expectation operator before the logarithm371

symbol. Since the function f (x) = log2 (1 + 1/x) is convex372

of x, we utilize the Jensen’s inequality to obtain the following373

lower bound374

Rk ≥ Rk(Φ)375

(a)
= τo log2

(
1+

p

p
∑K

i=1 E
{
aH

k E
{
eieH

i

}
ak

}
+σ2E{∥∥aH

k

∥∥2}

)
376

(15)377

(b)
= τo log2

(
1+

p

(p
∑K

i=1 εi+σ2) E{[(Q̂HQ̂)−1]kk}

)
,378

(16)379

where εi is defined in (9), (a) utilizes the independence380

between the channel estimate and the estimation errors, and381

(b) is due to the result in (9) and
∥∥aH

k

∥∥2 =
[
AHA

]
kk

=382

[(Q̂HQ̂)−1]kk .383

Theorem 2: The achievable rate of user k is lower bounded384

by (17), as shown at the bottom of the next page, where Λ =385

β
δ+1ΥHH

1 H1Υ + ΩΥ2 + σ2

τpΥ
2.386

Proof: Please refer to Appendix C. �387

The rate expression in Theorem 2 depends only on the388

slowly varying statistical CSI. Therefore, (17) enables us to389

design the phase shifts of the RIS only relying on the long-390

term CSI. Accordingly, we only need to update the RIS’s phase391

shifts over a large time scale, which could effectively reduce392

overhead and computational complexity. Before the design of393

the phase shifts, we first analyze (17) to shed some light on394

the benefits of the RIS, and to answer the question whether395

RIS-aided massive MIMO is promising or not.396

B. Conventional Systems Without RIS397

Corollary 1: When the RIS is switched off (i.e., αk = β =398

0, ∀k), the data rate (17) reduces to399

Rk
w/o = τo log2

⎛⎝1 +
p(M −K)

p
∑K

i=1
1

τp

σ2 + 1
γi

+ σ2
× γ2

k

γk + σ2

τp

⎞⎠ .400

(18)401

When the RIS is switched off, the RIS-aided massive MIMO 402

systems degrade to the conventional massive MIMO systems 403

with Rayleigh fading channels (Q → D), which has been 404

studied in [4]. As expected, the obtained rate (18) is the same 405

as [4, Eq. (42)]. Based on (18), it can be seen that the rate 406

is on the order of O (log2 (M)), and the rate can maintain a 407

non-zero value when the power is scaled down proportionally 408

to p = Eu/
√
M , as the number of antennas M →∞, where 409

Eu is a constant. Specifically, we have 410

limp= Eu√
M

,M→∞ Rk
w/o → τo log2

(
1 + τE2

uγ
2
kσ

−4
)
. (19) 411

Note that the achievable rate in (18) and power scaling law 412

in (19) will serve as baselines and help us identify the benefits 413

brought by introducing an RIS. 414

C. What’s New After Integrating an RIS? 415

The order of magnitude of Rk (Φ) in (17) with respect to 416

M is O (log2 (M)), since εk and Λ are independent of M . 417

However, it is challenging to determine how Rk (Φ) scales 418

with N , due to the unknown value of Φ and the inverse 419

operator. For tractability, we propose an insightful lower 420

bound Rk for Rk (Φ) in the following. 421

Corollary 2: A Φ-independent lower bound Rk is given by 422

Rk (Φ) ≥ Rk = τo log2

(
1 + p(M−K)

(p
�K

i=1 εi+σ2)[Λ−1]kk

)
, (20) 423

where equality holds when δ = 0, and the gap Rk (Φ) − 424

Rk enlarges after optimizing Φ. Besides, (20) can be 425

approximated as 426

Rk ≈ τo log2

(
1 + p(M−K)

p
�K

i=1 εi+σ2 ×
�

N
αkβ

δ+1 +γk

�2

N
αkβ

δ+1 +γk+ σ2
τp

)
, (21) 427

which scales on the order of O (log2 (MN)). 428

Proof: Please refer to Appendix D. � 429

Interestingly, if we treat N αkβ
δ+1 + γk as a new path-loss 430

factor, (21) possesses the same form as (18). This reveals 431

two fundamental impacts of the RIS: i) Positive effect: RIS 432

enhances the channel strength by a factor N αkβ
δ+1 ; ii) Negative 433

effect: RIS results in larger channel estimation errors εk. 434

However, the channel strength always increases with N since 435

(N
αkβ

δ+1 +γk)2

N
αkβ

δ+1 +γk+ σ2
τp

grows without bound as N → ∞, but the 436

estimation error saturates to εk → σ2

τp as N →∞. Therefore, 437

for large N , the benefits of the RIS outweigh its drawbacks 438

in massive MIMO systems. 439

Corollary 2 proves that even with imperfect CSI, RIS-aided 440

massive MIMO systems can achieve an ergodic rate at least 441

on the order of O (log2 (MN)). This promising gain comes 442

from the additional N paths contributed by the RIS for 443

each user, such that more signals can be collected by the 444

BS. Compared with the order O (log2 (M)) in conventional 445

systems, Corollary 2 proves that much higher capacity can 446

be achieved after integrating an RIS. More importantly, the 447

scaling law O (log2 (MN)) indicates that if we want to 448

maintain a fixed rate, the number of antennas can be reduced 449

inversely proportional to the number of RIS elements. For 450
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better understanding, we provide a quantitative relationship451

for a special case.452

Corollary 3: When δ = 0 and for large N , to achieve453

SNRk = C0 for a given N , the required number of antennas454

M is approximately given by455

M ≈ C0(K + τ)σ2

τp (Nαkβ + γk)
+K456

= 2C0
σ2

p
× 1
Nαkβ + γk

+K, if τ = K. (22)457

Proof: When δ = 0, we have Rk (Φ) = Rk. Then,458

using (21), for large N , we have εk ≈ σ2

τp , and SNRk ≈459

p(M−K)

K σ2
τ +σ2

(Nαkβ + γk). Solving the equation SNRk = C0460

completes the proof. �461

Corollary 3 corresponds to the scenarios with rich scattering.462

Eq. (22) clearly exhibits the inverse proportional relationship463

between M and N . Meanwhile, intuitively, M increases with464

C0, K , and σ2

p , but decreases with the link strengths αkβ465

and γk. Since the RIS’s reflecting elements consume much466

less energy than RF chains, Corollary 3 states that the energy467

efficiency can be remarkably improved by integrating an RIS.468

Corollary 4: If the RIS-BS channel is purely LoS (δ →∞),469

RIS-aided massive MIMO systems perform no worse than470

conventional massive MIMO systems, i.e., Rk (Φ) ≥ Rk
w/o.471

Proof: Substituting δ → ∞ into (20), εk, and κk,472

it can be shown that Rk = Rk
w/o. Then, we have473

Rk (Φ) ≥ Rk = Rk
w/o. �474

Corollary 4 corresponds to the scenario where the RIS is475

carefully deployed to reduce the scatters and obstacles between476

the BS and the RIS. In this case, the additional channel esti-477

mation error in εk, ∀k, caused by the RIS, vanishes. Therefore,478

the RIS only has the positive effect of enhancing the channel479

strength, which improves the achievable rate. We emphasize480

that even though we can only prove that RIS-aided systems are481

no worse than conventional systems when δ →∞, in general,482

it could perform much better because the second lower bound483

Rk is not as tight as the first lower bound Rk (Φ) if Φ is484

carefully designed.485

D. Power Scaling Law486

In conventional massive MIMO systems, an attractive fea-487

ture is that the transmit power can be scaled down propor-488

tionally by increasing M [3]–[5]. After introducing an RIS,489

we reveal a new power scaling law with respect to N , and490

compare it to (19).491

Corollary 5: As N → ∞, when the power is scaled492

proportionally to p = Eu/N , the achievable rate in (17) can493

maintain a non-zero value �Rk (Φ) → τo log2

(
1 +
−−→
SNRk

)
,494

where 495

−−→
SNRk =

Eu(M −K)∑K
i=1

Eu
τEu
σ2 + δ+1

αiβ

+ σ2
× 1

[Ξ−1]kk

496

≥ Eu(M −K)∑K
i=1

Eu
τEu
σ2 + δ+1

αiβ

+ σ2
×

(
αkβ
δ+1

)2

αkβ
δ+1 + σ2

τEu

. (23) 497

with Ξ=diag
{

(
α1β
δ+1 )2

α1β
δ+1 + σ2

τEu

,. . . ,
(

αKβ

δ+1 )2

αKβ

δ+1 + σ2
τEu

}
+ βδ

δ+1
HH

1 ΦHaNaH
NΦH1

N . 498

Proof: Substitute p = Eu

N into (17). As N → ∞, 499

we have κk →
αkβ

δ+1
αkβ

δ+1 + σ2
τEu

, Eu

N εi → Eu
δ+1
αiβ + τEu

σ2
, ΥHH

1 H1Υ
N → 500

diag
{
κ2

1α1, . . . , κ
2
KαK

}
, ΩΥ2

N → 0, and σ2

τp
Υ2

N → σ2

τEu
Υ2, 501

which help us arrive at the first equation in (23). Then, the 502

lower bound can be obtained by using the inequality in (51). 503

� 504

Comparing (23) with (19), it can be seen that this new 505

scaling law has a high order of magnitude with respect to 506

M . Besides, by comparing (23) with (18), it is interesting to 507

find that (23) can be interpreted as the SNR achieved by a 508

conventional massive MIMO system with transmit power Eu 509

and path-loss αkβ
δ+1 . To sum up, for large M and N , transmit 510

power can be significantly reduced while achieving high data 511

rates. 512

E. Comparison With MRC-Based Systems 513

Corollary 6: When p or M or N is large, ZF-based 514

RIS-aided massive MIMO outperforms its MRC-based coun- 515

terpart. Besides, the severe fairness problem in MRC-based 516

RIS-aided massive MIMO system [24, Remark 2] does not 517

exist in the considered ZF-based systems. 518

Proof: According to Corollary 2, when p or M grows 519

without bound, it is found that Rk ≥ Rk → ∞, ∀k. Thus, 520

all users can have infinite data rates. However, as proved in 521

[24, Remark 2], when using MRC detectors, due to the mutual 522

interference, the rate is still bounded when p or M is large. 523

Meanwhile, the rates of all users in the considered system 524

are at least on the order of O (log2 (N)). However, when 525

using MRC, the rate of only one user can be on the order 526

of O (log2 (N)), while the rates of all other users degrade 527

to zero when N is large, which results in a serious fairness 528

problem. � 529

ZF-based RIS systems perform better since RIS-aided 530

systems suffer from severe multi-user interference. This is 531

because multiple users share the common RIS-BS channel, and 532

thus the K users’ channels are highly correlated. The highly 533

correlated channels result in severe interference and low data 534

rate. However, by using ZF, the severe multi-user interference 535

Rk (Φ) = τo log2

⎛⎜⎜⎝1 +
p(M −K)(

p
∑K

i=1 εi + σ2
)[(

Λ + βδ
δ+1H

H
1 ΦHaNaH

NΦH1

)−1
]

kk

⎞⎟⎟⎠ , (17)
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issue can be addressed, which leads to promising performance536

for various aspects.537

F. The Upper Bound538

The analysis based on the lower bound Rk is rigorous but539

conservative, since it ignores the performance gain achieved540

by optimizing Φ. We next provide an upper bound to unveil541

the maximum gain achieved by optimizing Φ.542

Corollary 7: The rate is upper bounded by Rk(Φ) ≤ Rk =543

τo log2

(
1 + SNRk

)
, where544

SNRk545

=
p(M −K)

p
∑K

i=1 εi + σ2

{
(N αkβ

δ+1 + γk)2

N αkβ
δ+1 + γk + σ2

τp

+
∣∣aH

NΦhk

∣∣2 αkβδ

δ + 1

}
546

(24)547

≤ p(M −K)

p
∑K

i=1 εi + σ2

{
(N αkβ

δ+1 + γk)2

N αkβ
δ+1 + γk + σ2

τp

+N2αkβδ

δ + 1

}
. (25)548

Based on (24), Rk is at least on the order of549

O (log2 (MN)). Based on (25), Rk is on the order of550

O (
log2

(
MN2

))
.551

Proof: Please refer to Appendix E. �552

We emphasize that (24) holds for all K users but (25) does553

not. This is because (25) is achieved by aligning the RIS phase554

shifts to a specific user k so that aH
NΦhk = N . However, when555

aH
NΦhk = N , it is known that aH

NΦhi, ∀i �= k, is bounded556

even forN →∞ [24]. Thus, the additionalN -fold gain in (25)557

comes from the concentration of passive beamforming on user558

k. Combining the lower bound in Corollary 2 and this upper559

bound, we highlight the following conclusion:560

Remark 1: If the RIS phase shifts are aligned to one specific561

user, the rate of this user will scale at most on the order of562

O (
log2

(
MN2

))
, while the rates of the other users scale at563

least on the order of O (log2 (MN)), which is high as well.564

Based on these two achievable rate scaling laws, the sum565

user rate will be high for large M and N , if we simply align566

the RIS phase shifts for an arbitrary user, which constitutes a567

low-complexity heuristic approach for the sum-rate maximiza-568

tion problem.569

Corollary 8: The quantization error caused by RIS discrete570

phase shifts does not impact the derived achievable rate571

scaling orders.572

Proof: First, the lower bound Rk does not depend573

on Φ, and hence, is not affected by quantization errors.574

Secondly,
∣∣aH

NΦhk

∣∣2 ≥ N2 cos2
(

π
2b

)
holds for an575

RIS with b-bit quantization [25]. Therefore, scaling order576

O (
log2

(
MN2

))
still holds for Rk. �577

G. Summary578

We summarize that RIS-aided massive MIMO with ZF579

detectors is promising for580

• Green communications (Corollary 3) : The number of581

BS antennas can be reduced inversely proportional to the582

number of RIS elements, while maintaining a constant583

rate.584

• Enhanced mobile broadband (Corollary 2, 7, 8, 585

Remark 1) : According to the rate scaling orders, ultra- 586

high throughput requirement can be achieved for large M 587

and N . 588

• Internet of things (Corollary 5) : For large M and N , 589

all users can significantly reduce their transmit powers 590

while maintaining high data rates. 591

V. RIS PHASE SHIFT DESIGN 592

In this section, based on the derived rate expression in (17) 593

and the low-complexity MM technique [36], we aim to solve 594

the sum user rate maximization (Max-Sum) and the minimum 595

user rate maximization (Max-Min) problems, respectively. The 596

Max-Sum problem maximizes the utility but may sacrifice 597

fairness. On the contrary, the Max-Min problem guarantees 598

fairness but may sacrifice utility. Thus, simultaneously inves- 599

tigating both problems can help us understand which optimiza- 600

tion criterion is more suitable for the considered systems. For 601

tractability, variable Φ is rewritten as Φ = diag
{
vH

}
, where 602

v =
[
ejθ1 , . . . , ejθN

]H
. Then, we can transform the design of 603

Φ to the design of vector v. 604

Lemma 2: The rate in (17) can be rewritten as Rk (v) = 605

τo

ln(2) ln
(
1 + vHBv

vHCkv

)
, where 606

B =
1
N

IN +
βδ

δ + 1
diag

{
aH

N

}
H1Λ−1HH

1 diag {aN} , 607

Ck =
p
∑K

i=1 εi + σ2

p(M −K)

([
Λ−1

]
kk

B− βδ

δ + 1
zkzH

k

)
, (26) 608

and zH
k =

[
Λ−1HH

1 diag {aN}
]
(k,:)

. Besides, we have B � 0 609

and Ck � 0. 610

Proof: We can complete the proof by substituting the last 611

equality in (51) into (17), and using ΦHaN = diag {aN}v 612

and 1 = 1
N vHINv. Besides, we have B � 0 due to Λ−1 � 0, 613

which results in vHBv > 0. Since the rate Rk (v) must be 614

non-negative due to its definition in (15), we obtain vHCkv ≥ 615

0, which means that Ck � 0. � 616

Define fk(v) � ln
(
1 + vHBv

vHCkv

)
for brevity. Since the 617

same factor τo

ln(2) is included in Rk (v) , ∀k, we can ignore 618

it and formulate the following two optimization problems 619

Max-Sum : max
v

∑K

k=1
fk(v), s.t.

∣∣[v](n)

∣∣ = 1, ∀n. 620

(27) 621

Max-Min : max
v

min
k

fk(v), s.t.
∣∣[v](n)

∣∣ = 1, ∀n. 622

(28) 623

To successfully solve the above two problems under the 624

MM algorithm framework, tractable lower-bound surrogate 625

functions need to be constructed for objective functions in (27) 626

and (28), and then closed-form optimal solutions are expected 627

to be derived via the surrogate functions. 628

A. Max-Sum Problem 629

Lemma 3: For a fixed point vn, a lower bound of fk(v) is 630

given by 631

fk(v) ≥ fk(v | vn) = constk +2 Re
{

(fn
k )H v

}
, (29) 632
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where633

constk = fk (vn)− vH
n Bvn

vH
n Ckvn

634

−ψkvH
n (λmax (Ck + B) IN − (Ck + B))vn635

−Nψkλmax (Ck + B) ,636

(fn
k )H = ωkvH

n B−ψkvH
n ((Ck + B)−λmax (Ck + B) IN ) ,637

ωk =
1

vH
n Ckvn

,638

ψk =
vH

n Bvn

(vH
n Ckvn) (vH

n Ckvn + vH
n Bvn)

. (30)639

Proof: Please refer to Appendix F. �640

Then, the Max-Sum problem (27) can be directly solved641

based on the proposed surrogate function fk(v | vn) in642

Lemma 3. Denoted by vn the solution in the n-th iteration,643

the closed-form optimal solution in the (n+ 1)-th iteration is644

given by645

vn+1 = argmax
v

∑K

k=1
fk (v | vn)646

= exp
{
j∠

(∑K

k=1
fn
k

)}
. (31)647

B. Max-Min Problem648

Next, we focus on the Max-Min problem (28), which is649

more challenging since the objective function min
k
fk(v) is650

non-differentiable. Therefore, we first adopt the log-sum-exp651

approximation in [37] to obtain a lower-bounded smooth652

objective function, as follows653

min
k
fk(v) ≥ min

k
fk(v | vn) ≥ f̃ (v)654

� − 1
μ

ln
(∑K

k=1
exp

{−μfk(v | vn)
})

, (32)655

where μ > 0 is a constant for controlling the approxima-656

tion accuracy, and the last inequality can be proved similar657

to [37, (15)].658

Lemma 4: For a fixed point vn, f̃ (v) in (32) is lower659

bounded by660

f̃ (v) ≥ f̃ (v | vn) = c̃onst + 2 Re
{[(∑K

k=1
lnk (fn

k )H

)
661

+
(

2μmax
k
‖fn

k ‖2
)

vH
n

]
v
}
,662

(33)663

where664

c̃onst = f̃ (vn)− 2 Re
{∑K

k=1
lnk (fn

k )H vn

}
665

+ 2N
(
−2μmax

k
‖fn

k ‖2
)
, (34)666

lnk =
exp

{−μfk(vn | vn)
}∑K

k=1 exp
{−μfk(vn | vn)

} . (35)667

Proof: Please refer to Appendix G. �668

Based on the MM algorithm, the Max-Min problem (28)669

can be solved by maximizing the lower bound f̃ (v | vn) in670

Algorithm 1 MM Algorithm
1: Initialize v0, n = 0;
2: repeat
3: Given vn, obtain solution v(1)

n+1 from (31) or (36);

4: Given v(1)
n+1, obtain solution v(2)

n+1 from (31) or (36);

5: �v1 = v(1)
n+1 − vn, and �v2 = v(2)

n+1 − v(1)
n+1 −�v1;

6: ρ = − ‖�v1‖
‖�v2‖ , and vn+1 =

− exp
{
j∠

(
vn − 2ρ�v1 + ρ2�v2

)}
;

7: while vn+1 does not lead to an increasing objective value
in (27) or (28) do

8: ρ = (ρ− 1) /2, and vn+1 =
− exp

{
j∠

(
vn − 2ρ�v1 + ρ2�v2

)}
;

9: end while
10: n← n+ 1;
11: until The objective value in (27) or (28) converges.

each iteration. Given the solution vn in the n-th iteration, the 671

closed-form optimal solution in the (n+ 1)-th iteration is 672

vn+1 = arg max
v

f̃ (v | vn) 673

= exp
{
j∠

{(∑K

k=1
lnk fn

k

)
674

+
(

2μmax
k
‖fn

k ‖2
)

vn

}}
. (36) 675

Finally, the framework for solving Max-Sum problem (27) 676

and Max-Min problem (28) are summarized in Algorithm 1, 677

where steps 4−9 are used to accelerate the convergence speed 678

of the MM technique [38]. 679

C. Convergence and Complexity Analysis 680

For both the Max-Sum and Max-Min problems, MM algo- 681

rithms are utilized to optimize variable v in each iteration. 682

First, the monotonicity of the MM algorithm has been proved 683

in [39]. Second, in Corollary 7, we have proved that there is 684

an upper bound for the objective function of the optimization 685

problem. Therefore, the convergence of the proposed algorithm 686

is guaranteed. 687

The computational complexity of solving the Max-Sum 688

problem based on (31) is mainly caused by fn
k , ∀k, 689

in (30). By neglecting the lower-order terms, the approx- 690

imate computational complexity of λmax (B + Ck) , ∀k, is 691

O (
KN3 +K3 +NK2

)
[40, C.1]. Note that parameters B 692

and Ck do not need to be updated in each iteration. Denote the 693

number of iterations in Algorithm 1 as T . Then, given B and 694

Ck, the approximate computational complexity of the remain- 695

ing terms in the expression for fn
k , ∀k, in (30) is O (

KN2
)

696

which needs to be computed T times. Therefore, the overall 697

approximate complexity of solving the Max-Sum problem 698

with Algorithm 1 is O (
TKN2 +KN3 +K3 +NK2

)
. 699

The computational complexity of solving the Max-Min 700

problem based on (36) mainly comes from parameters fn
k , ∀k, 701

in (30) and lnk , ∀k, in (35). The approximate computational 702

complexity of fn
k , ∀k, is the same as that in solving the 703

Max-Sum problem, i.e., O (
TKN2 +KN3 +K3 +NK2

)
. 704
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Besides, the parameters lnk , ∀k, in (35) has the approx-705

imate computational complexity of O (
TKN2

)
. There-706

fore, the overall approximate complexity of solving the707

Max-Min problem with Algorithm 1 remains on the order of708

O (
TKN2 +KN3 +K3 +NK2

)
.709

VI. NUMERICAL RESULTS710

In this section, we verify the correctness of our derived711

results and give insights. Unless otherwise stated, as in [24],712

we set M = N = 64, δ = 1, τc = 196, τ = K , and μ = 10.713

The transmit power of the pilot and data signals for each user714

is p = 30 dBm, and the noise power is σ2 = −104 dBm.715

The BS and the RIS are located at (0, 0) and (0, 700 m),716

respectively. The number of users is K = 8, and the users are717

randomly located in a circle centred at (10 m, 700 m) of radius718

10 m. Without loss of generality, we denote the users nearest719

to and furthest from the RIS as users 1 and 8, respectively.720

The path-loss factors are calculated as αk = 10−3d−2
uR,k,721

β = 10−3d−2.5
RB , and γk = 10−3d−4

uB,k, where duR,k, dRB,722

and duB,k denote the distances between user k and the RIS,723

the RIS and the BS, and user k and the BS, respectively.724

The AoA and AoD parameters used for the LoS channels are725

generated randomly from [0, 2π). The convergence accuracy726

for Algorithm 1 is set to 10−6. The theoretical result in (17)727

is verified via Monte-Carlo simulations based on (14), and728

the corresponding results are referred to as “Simulation” in729

the legends of the following figures. The MRC-based system730

for perfect and imperfect CSI are evaluated based on [41]731

and [24], respectively.732

To begin with, we want to verify the accuracy of the733

derived rate scaling order O (
log2

(
MN2

))
(based on the734

upper bound) and O (log2 (MN)) (based on the lower bound)735

in Remark 1. To this end, some simple RIS design schemes736

are needed. Recall that the order O (
log2

(
MN2

))
obtained737

in Corollary 7 requires that the phase shifts of the RIS are738

aligned to only one user. Therefore, the following two types739

of RIS designs are considered.740

• Case 1: The phase shifts are aligned to the nearest user741

(user 1) so that aH
NΦh1 = N .742

• Case 2: The phase shifts are aligned to the furthest user743

(user 8) so that aH
NΦh8 = N .744

Besides, recall that the order O (log2 (MN)) drawn in745

Corollary 2 corresponds to a Φ-independent lower bound, and746

this bound could be tighter when the RIS is not effectively747

optimized. Therefore, we also consider the following two RIS748

design schemes in which Φ is not optimized.749

• Case 3: The phase shift of each RIS element is set750

randomly in [0, 2π).751

• Case 4: The phase shift matrix is simply set as an identity752

matrix, i.e., Φ = IN .753

Furthermore, these four cases will serve as baseline schemes754

for the proposed Algorithm 1.755

Fig. 2(a) illustrates the derived upper and lower bounds,756

and shows the rate of one user when the RIS phase shifts757

are aligned to it. To be specific, we respectively plot the758

rate of user 1 in Case 1, and the rate of user 8 in Case 2.759

Firstly, it can be observed that when the RIS phase shifts are760

Fig. 2. Achievable rate of a user under different RIS designs.

aligned to user 1 or user 8, their rates tightly approach the 761

upper bound in (25), which validates that the derived scaling 762

order O (
log2

(
MN2

))
in (25) is achievable. Secondly, the 763

theoretical results match well with the Monte-Carlo simula- 764

tion results, which verifies the correctness of our derivatives. 765

Besides, compared with the rate of user 8 achieved in Case 2, 766

aligning the phase shifts to user 1 in Case 1 yields a higher 767

achievable rate. This is because user 1 is located closer to 768

the RIS and thus has a smaller path-loss. Thirdly, it can be 769

seen that the approximate lower bound (21) perfectly matches 770

with the accurate lower bound (20) for all considered values 771

of N , which verifies the reliability of our previous analysis 772

based on (21). Finally, when N is doubled from N = 200 to 773

N = 400, the increment of the rate in lower bound and that in 774

Case 1 are almost τo log2 (2) = 0.96 and τo log2

(
22
)

= 1.92, 775

respectively, which confirms the derived theoretical scaling 776

orders of O (log2 (MN)) and O (
log2

(
MN2

))
. 777

Fig. 2(b) shows the achievable rate of user 1 when the RIS 778

phase shifts are not aligned to it, i.e., in Case 2 - 4. It can be 779

observed that in these three cases, the upper bound (24) and 780

lower bound (20) are tight, which means that the rate scales 781

accurately on the order of O (log2 (MN)). This is because 782

the RIS phase shifts cannot be aligned simultaneously to many 783

users. Then, only one user’s rate can scale asO (
log2

(
MN2

))
784
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Fig. 3. Sum user rate and minimum user rate.

while the rates of all other users scale only as O (log2 (MN)).785

Therefore, the scaling orderO (log2 (MN)) obtained based on786

the lower bound is appropriate for understanding the system787

capacity since it corresponds to the rate of most of the users.788

Next, we respectively examine the sum user rate and the789

minimum user rate when using the proposed RIS design in790

Algorithm 1. Fig. 3(a) illustrates the sum user rate. The791

RIS’s phase shifts are designed by solving the Max-Sum792

problem (27), denoted as Case 5. For comparison, the RIS’s793

phase shifts designs based on Case 1 (aligned to user 1), Case 2794

(aligned to user 8) and Case 3 (set randomly) are considered795

as well. Firstly, it can be observed that there exists some796

performance loss caused by channel estimation errors. This is797

because the length of the pilots is τ = K = 8, which is very798

small compared to the large M and N . However, the ZF-based799

perfect and imperfect CSI cases have a similar growth rate800

(i.e., a nearly constant gap). This is because the channel801

estimation error εk saturates for large N and then does not802

degrade the scaling order. Secondly, it is seen that ZF-based803

systems perform much better than MRC-based and RIS-free804

systems, especially when N is large. This is consistent with805

our analytical results. Thirdly, the rate in Case 5 is much higher806

than that in Case 3. However, a near-optimal performance is807

achieved by Case 1 and Case 2. Especially, in Case 1 where808

the RIS phase shifts are aligned to the nearest user, the rate809

Fig. 4. Trade-off between M and N and the power scaling law.

is almost the same as the optimal result. This is because by 810

aligning the RIS’s phase shifts to a user, the rate of this user 811

scales on the order of O (
log2

(
MN2

))
, while the rates of all 812

other users scale still on the order of O (log2 (MN)), which 813

corresponds to a large sum user rate when both M and N are 814

large. Since directly setting aH
NΦhk = N is a very simple 815

and low-complexity approach, aligning the RIS’s phase shifts 816

to an arbitrary user is a high-quality sub-optimal solution for 817

practical systems. Finally, it can be again observed that the 818

lower bound (20) is tight to the achievable rate realized by a 819

randomly chosen Φ. 820

Fig. 3(b) evaluates the minimum user rate. We design 821

the RIS phase shifts by solving the Max-Min problem (28), 822

denoted as Case 6. The RIS designs based on Case 1 (aligned 823

to user 1), Case 2 (aligned to user 8), Case 3 (set randomly), 824

and Case 5 (Max-Sum) are also considered for comparison. 825

It is seen that our optimal design in Case 6 yields better 826

minimum user rates compared with other cases. However, 827

despite some performance loss, Cases 1, 2, 3, and 5 also 828

achieve relatively high minimum user rates. This is because 829

the dominant limitation, namely the multi-user interference, 830

is eliminated. Thus, even the lowest rate grows still on the 831

order of O (log2 (MN)), which is guaranteed to be high 832

with large M and N . Meanwhile, it can be seen that the 833
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Fig. 5. The convergence behavior of the proposed MM algorithms, where
M = 64.

minimum rates in Case 2 are better than that in Case 1,834

3, and 5. This is because in Case 2, the RIS’s phase shifts835

are aligned to the furthest user who has the lowest path-loss836

factor. Intuitively, compared with Case 1 which aligns the837

RIS phase shifts to the nearest user, Case 2 is more fair and838

then achieves a better minimum user rate. Besides, it can be839

observed that the achievable rate is degraded when the transmit840

power p is reduced from 30 dBm (1 W) to 27 dBm (0.5 W).841

This is because a lower SNR not only decreases the power842

of the desired signal received at the BS but also results in843

larger channel estimation errors which further decrease the844

received SINR.845

Fig. 4(a) evaluates the trade-off between M and N with846

respect to the sum user rate and the minimum user rate,847

respectively. As expected, in both cases, M can be reduced848

inversely proportional to the increase of N while maintaining849

a constant rate. Meanwhile, after the optimization of Φ, M can850

be further decreased compared to the case with random phase851

shift design. Besides, it can be seen that the reduction of M852

is more obvious when the rate target is more stringent. This853

comes from the decreasing slope of the logarithm function.854

Without the RIS, the rate is on the order of O (log2 (M)),855

and very large M is needed to achieve a high rate target.856

However, if the rate is on the order of O (log2 (MN)), the857

high data rate target can be met with moderate M but large 858

N , since the product MN is very large. Besides, when δ = 0 859

(in Corollary 3), Fig. 4(a) verifies the derived theoretical 860

relationship in (22) by using the path-loss of user 8. As can 861

be observed, the derived results are accurate when N > 40. 862

Fig. 4(b) validates the derived power scaling law in (23), 863

where the power is scaled proportionally to p = 10/N . 864

As N → ∞, it is verified that the rate tends to the derived 865

asymptotic limit, and it is larger than the lower bound. Also, 866

it can be observed that the asymptotic limit is improved 867

significantly when M is doubled from 32 to 64. This is because 868

the asymptotic limit in (23) is on the order of O (log2 (M)). 869

Finally, Fig. 5 illustrates the convergence behavior of the 870

proposed MM algorithms for solving Max-Sum problem (27) 871

and Max-Min problem (28), respectively. Both the iteration 872

number and the needed CPU time are shown for different 873

numbers of RIS reflecting elements. As can be seen, our 874

algorithms have a fast speed of convergence (within 0.3 s) 875

even though the values of M and N are large, and only a 876

few iterations are sufficient to achieve a large portion of the 877

achievable rate after full convergence. This is because closed- 878

form solutions (31) and (36) are exploited in each iteration of 879

the proposed algorithms. Therefore, the computation has low 880

complexity, and the convergence time is very short. Besides, 881

it can be observed that the iteration number and CPU time 882

increase with N due to the increased number of optimized 883

variables. 884

VII. CONCLUSION 885

This work demonstrates that RIS-aided MIMO with ZF 886

detectors is a promising system architecture for many appli- 887

cations. We derive theoretical expressions for the ergodic 888

rate, based on which two low-complexity MM algorithms are 889

proposed to respectively optimize the sum user rate and the 890

minimum user rate. We demonstrate that by aligning the RIS 891

phase shifts to a user, the rate scaling order of that user can 892

approach O (
log2

(
MN2

))
, while the rate scaling order of 893

the other users is guaranteed to be O (log2 (MN)). Therefore, 894

high system capacity can be realized with a low-complexity 895

RIS design. We also prove that by increasing N , the M 896

required to maintain a constant achievable rate can be reduced 897

inverse proportionally. Besides, we prove that as N →∞, the 898

transmit power of all users can be scaled proportionally to 899

p = 1/N while maintaining high rates. 900

APPENDIX A 901

Based on the definitions of H1, H2, and D, the channel of 902

user k can be expanded as 903

qk =

√
αkβδ

δ + 1
H2Φhk +

√
αkβ

δ + 1
H̃2Φhk +

√
γkd̃k. (37) 904

Firstly, since H̃2 consists of i.i.d. CN (0, 1) elements, vector 905√
αkβ
δ+1 H̃2Φhk is comprised of mutually independent ele- 906

ments. Secondly, the elements of vector
√

αkβ
δ+1 H̃2Φhk are lin- 907

ear combinations of independent Gaussian random variables. 908

Therefore, vector
√

αkβ
δ+1 H̃2Φhk consists of i.i.d. Gaussian 909
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variables, following
√

αkβ
δ+1 H̃2Φhk ∼ CN

(
0, N αkβ

δ+1 IM

)
.910

Meanwhile, we have
√
γkd̃k ∼ CN (0, γkIM ). Since the sum911

of independent Gaussian vectors is still a Gaussian vector [42],912

we have913 √
αkβ

δ + 1
H̃2Φhk+

√
γkd̃k ∼ CN

(
0,
(
N
αkβ

δ + 1
+γk

)
IM

)
.914

(38)915

Combining (37) with (38), it is proved that qk is a916

Gaussian distributed vector, where E {qk} =
√

αkβδ
δ+1 H2Φhk,917

and Cov {qk} = E{(qk − E {qk}) (qk − E {qk})H} =918 (
N αkβ

δ+1 + γk

)
IM .919

Following a similar procedure, the distribution of the noise920

matrix 1√
τpNsk can be derived, which is omitted here for921

brevity.922

APPENDIX B923

Since the channel qk and the noise Nsk are Gaussian924

distributed random variables, the considered observation vec-925

tor yk
p in (7) is consistent with the complex Bayesian linear926

model [43, Eq. (15.63)] [3, Lemma B.17]. Therefore, we can927

directly apply the results in [43] to obtain the MMSE channel928

estimate of qk and the MSE matrix. In particular, applying [43,929

Eq. (15.64)] and using the distribution in Lemma 1, we can930

obtain (39), as shown at the bottom of the next page.931

By substituting the observation vector yk
p in (39) with its932

expression in (7), we complete the calculation of the MMSE933

channel estimate in (8). Next, applying [43, Eq. (15.67)], the934

MSE matrix is obtained as935

MSEk =

[((
N
αkβ

δ + 1
+ γk

)
IM

)−1

+
τp

σ2
IM

]−1

. (40)936

After some straightforward simplifications, we can arrive937

at (9). Besides, since the channel qk is a Gaussian vector,938

the channel estimate q̂k and the estimation error ek are939

independent of each other, due to the orthogonality principle940

of the MMSE estimator [43].941

APPENDIX C942

To derive the lower bound in (16), term E{[(Q̂HQ̂)−1]kk}943

needs to be tackled, where Q̂ is given in (10). We begin by944

proving that channel Q̂ is Gaussian distributed.945

Lemma 5: [44] A random matrix X is complex Gaussian946

distributed as X ∼ CN (E,Σ ⊗ Ψ), if vec
(
XH

) ∼947

CN (
vec

(
EH

)
,Σ⊗Ψ

)
. If X1 ∼ CN (E1,Σ1 ⊗ Ψ1) and948

X2 ∼ CN (E2,Σ2 ⊗ Ψ2) are independent distributed, then949

X1 + X2 ∼ CN (E1 + E2,Σ1 ⊗Ψ1 + Σ2 ⊗Ψ2).950

For notional brevity, we divide the estimated channel Q̂ into951

three independent parts Q̂ = Q̂RIS + Q̂BS + Q̂noise, where952

Q̂H
RIS =

√
βδ

δ + 1
HH

1 ΦHH
H

2 +

√
β

δ + 1
ΥHH

1 ΦHH̃H
2 ,953

Q̂H
BS = ΥΩ1/2D̃H ,954

Q̂H
noise =

1√
τp

ΥSHNH . (41)955

Recall that H̃2, D̃, and N are composed of i.i.d. Gaussian 956

random variables. By observing (41), we can find that each 957

column of matrices Q̂H
RIS , Q̂H

BS and Q̂H
noise can be written 958

as a linear transformation of mutually independent standard 959

Gaussian random vectors. Therefore, the columns of Q̂H
RIS , 960

Q̂H
BS , and Q̂H

noise are independent Gaussian vectors. As a 961

result, after vectorization, the vectors vec(Q̂H
RIS), vec(Q̂H

BS), 962

and vec(Q̂H
noise) are still Gaussian distributed. 963

Next, we derive their mean vector and covariance matrices. 964

First, consider the term vec(Q̂H
RIS). Obviously, the mean 965

vector is E{vec(Q̂H
RIS)} = vec(

√
βδ

δ+1H
H
1 ΦHH

H

2 ), and 966

the covariance matrix is given by (42), as shown at the 967

bottom of the next page, where (c) utilizes vec(ABC) = 968(
CT ⊗A

)
vec(B) and (A⊗B)H = AH⊗BH . (d) exploits 969

(A ⊗ C)(B ⊗ D) = (AB) ⊗ (CD) and ΦHΦ = IN . 970

According to (42) and Lemma 5, the distribution of Q̂RIS 971

is given by 972

Q̂RIS ∼ CN
(√

βδ

δ + 1
H2ΦH1, IM ⊗ β

δ + 1
ΥHH

1 H1Υ

)
. 973

(43) 974

Similarly, the distribution of Q̂BS and Q̂noise can be 975

calculated as follows 976

Q̂BS ∼ CN
(
0, IM ⊗ΩΥ2

)
, (44) 977

Q̂noise ∼ CN
(
0, IM ⊗ σ2

τp
Υ2

)
. (45) 978

Then, using Lemma 5 and the property that A⊗B + A⊗ 979

C = A ⊗ (B + C), the estimated channel Q̂ is Gaussian 980

distributed as follows 981

Q̂ ∼ CN
(√

βδ

δ + 1
H2ΦH1, 982

IM ⊗
(

β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

))
. (46) 983

Lemma 6: [45, Definition 5.1] Let W = XHX, with 984

n × m matrix X ∼ CN (E, In ⊗ Ψ). Then, W follows a 985

complex non-central Wishart distribution with n degrees of 986

freedom, covariance matrix Ψ, and non-centrality parameter 987

Σ = Ψ−1EHE, denoted by W ∼ CWm(n,Ψ,Σ). Besides, 988

its mean is E(W) = nΨ + ΨΣ [42, 10.3]. In particular, 989

if X ∼ CN (0, In⊗Ψ) has zero mean, W is complex central 990

Wishart distributed, denoted by W ∼ CWm(n,Ψ), where 991

E(W) = nΨ and E(W−1) = 1
n−mΨ−1, n > m [46]. 992

Since Q̂ is Gaussian distributed, from Lemma 6, the product 993

Q̂HQ̂ follows a complex non-central Wishart distribution 994

denoted by 995

Q̂HQ̂ ∼ CWK (M,ΨRIS ,ΣRIS) , (47) 996

where ΨRIS = β
δ+1ΥHH

1 H1Υ+ΩΥ2 + σ2

τpΥ
2 and ΣRIS = 997

(ΨRIS)−1 βδ
δ+1H

H
1 ΦHH

H

2 H2ΦH1. The statistical property 998

of (47) is very complex which encumbers further analysis 999

and optimization. Fortunately, it has been proved that the 1000

non-central Wishart distribution can be closely approximated 1001
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by a central Wishart distribution [47]. Therefore, as in [5],1002

[48], [49], we approximate the non-central Wishart distribu-1003

tion (47) by a central one with the same first order moment.1004

With Lemma 6 and (6), the mean of (47) is given by1005

E

{
Q̂HQ̂

}
= M

(
β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

)
1006

+
βδ

δ + 1
HH

1 ΦHH
H

2 H2ΦH11007

= M

(
β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2

)
1008

+M
βδ

δ + 1
HH

1 ΦHaNaH
NΦH1. (48)1009

Then, the central Wishart distribution with the same mean is1010

given by (49), as shown at the bottom of the next page.1011

By using the property of complex central Wishart distrib-1012

ution in Lemma 6, we obtain (50), as shown at the bottom1013

of the next page. The proof is completed by substituting (50)1014

into (16).1015

APPENDIX D1016

Recall that Λ = β
δ+1ΥHH

1 H1Υ + ΩΥ2 + σ2

τpΥ
2. It is1017

readily found that Λ = ΛH . Note that we assume the existence1018

of direct links, therefore we have Ω � 0. Meanwhile, we have1019

β
δ+1ΥHH

1 H1Υ � 0, ΩΥ2 � 0, and σ2

τpΥ
2 � 0. Therefore,1020

we obtain that Λ � 0, Λ−1 � 0, and
(
Λ−1

)H = Λ−1. Then,1021

applying the Woodbury’s identity and using the fact that Λ−1
1022

is positive definite and Hermitian, we have1023 [(
Λ +

βδ

δ + 1
HH

1 ΦHaNaH
NΦH1

)−1
]

kk

1024

=
[
Λ−1

]
kk
−

βδ
δ+1

[
Λ−1HH

1 ΦHaNaH
NΦH1Λ−1

]
kk

1 + βδ
δ+1a

H
NΦH1Λ−1HH

1 ΦHaN

1025

=
[
Λ−1

]
kk
−

βδ
δ+1

∣∣∣[Λ−1HH
1 ΦHaN

]
(k,1)

∣∣∣2
1 + βδ

δ+1

(
aH

NΦH1

)
Λ−1

(
aH

NΦH1

)H
1026

≤ [
Λ−1

]
kk
. (51)1027

Substituting (51) into (17), the lower bound in (20) can be1028

obtained.1029

Lemma 7: [5], [7], [24] When N → ∞, the product of1030

the LoS components h
H

k hi is still bounded, unless user i has1031

the same AoA as user k.1032

We can respectively calculate the diagonal and non-diagonal 1033

elements of Λ as follows 1034

[Λ](k,k) =
(
N
αkβ

δ + 1
+ γk +

σ2

τp

)
κ2

k, (52) 1035

[Λ](k,i) =
β

δ + 1
√
αkαiκkκih

H

k hi, ∀i �= k. (53) 1036

When N is small, due to the small product-distance path loss 1037

αkβ and
√
αiαkβ compared with γk, (53) is much smaller 1038

compared with (52). Therefore, Λ can be approximated as 1039

a diagonal matrix for small N . When N increases, based on 1040

Lemma 7, (52) grows much faster than (53). Thus, (52) is still 1041

much larger than (53) and we can approximate that Λ is domi- 1042

nated by diagonal elements. Finally, when N →∞, (52) tends 1043

to infinity but (53) does not. Therefore, Λ tends to a diagonal 1044

matrix for large N . Accordingly, for any N , Λ can be approxi- 1045

mated as a diagonal matrix diag{[Λ](1,1) , . . . , [Λ](K,K)} and 1046

then the approximate lower bound in (21) can be obtained 1047

by using
[
Λ−1

]
kk
≈ ([Λ]kk)−1 =

N
αkβ

δ+1 +γk+ σ2
τp�

N
αkβ

δ+1 +γk

�2 . Finally, 1048

by observing the order of magnitude of the numerator and 1049

denominator of the SNR in (21), we can find that the numer- 1050

ator is on the order of O (
MN2

)
, but the denominator is 1051

only on the order of O (N). Therefore, the rate is on the 1052

order of O (log2 (MN)). Besides, it can be readily found 1053

that Rk (Φ) = Rk when δ = 0. Meanwhile, for an opti- 1054

mal solution Φ∗∗ and a sub-optimal solution Φ∗, we have 1055

Rk (Φ∗∗) > Rk (Φ∗). Since Rk is independent of Φ, we have 1056

Rk (Φ∗∗)−Rk > Rk (Φ∗)−Rk, which indicates that the gap 1057

between Rk (Φ) and Rk will be enlarged if Φ is optimized. 1058

In other words, the proposed bound Rk will be tight when we 1059

use unoptimized phase shifts. 1060

APPENDIX E 1061

Lemma 8: If X � 0,
[
X−1

]
kk
≥ 1

[X]kk
. The equality holds 1062

only if X is diagonal [50]. 1063

Recall that we have Λ � 0 and HH
1 ΦHaNaH

NΦH1 � 0. 1064

Using Lemma 8 and (1), we have 1065[(
Λ +

βδ

δ + 1
HH

1 ΦHaNaH
NΦH1

)−1
]

kk

1066

≥ 1[
Λ + βδ

δ+1H
H
1 ΦHaNaH

NΦH1

]
kk

1067

q̂k =

√
αkβδ

δ + 1
H2Φhk +

(
N
αkβ

δ + 1
+ γk

)
IM

((
N
αkβ

δ + 1
+ γk +

σ2

τp

)
IM

)−1
(

yk
p −

√
αkβδ

δ + 1
H2Φhk

)
. (39)

Cov
{

vec
(
Q̂H

RIS

)}
= E

{
vec

(√
β

δ+1ΥHH
1 ΦHH̃H

2 IM

)
vec

(√
β

δ+1ΥHH
1 ΦHH̃H

2 IM

)H
}

(c)
=

(
IM ⊗

√
β

δ+1ΥHH
1 ΦH

)
E

{
vec

(
H̃H

2

)
vec

(
H̃H

2

)H
}(

IM ⊗
√

β
δ+1ΦH1Υ

)
=

(
IM ⊗

√
β

δ+1ΥHH
1 ΦH

)(
IM ⊗

√
β

δ+1ΦH1Υ
)

(d)
= IM ⊗ β

δ+1ΥHH
1 H1Υ,

(42)
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=
1

[Λ]kk + αkβδ
δ+1

∣∣aH
NΦhk

∣∣2≥ 1
[Λ]kk + αkβδ

δ+1 N
2

1068

=
1(

N αkβ
δ+1 + γk + σ2

τp

)
κ2

k + αkβδ
δ+1 N

2
, (54)1069

where the last inequality holds by using the property that1070 ∣∣aH
NΦhk

∣∣ ≤ N from triangle inequality [24, (189)], and the1071

equality holds when θn = −∠
{[

aH
N

]
n

[
hk

]
n

}
, ∀n.1072

The proof is completed by substituting (54) into (17) with1073

a few additional simplifications.1074

APPENDIX F1075

To begin with, we give a brief introduction to the opti-1076

mization under the MM framework [12], [36]. To maximize1077

a function g(v) based on the MM algorithm, at a point vn,1078

we need to construct a lower bound g(v|vn) satisfying1079

g(vn) = g (vn | vn) , (55)1080

g (v) ≥ g (v | vn) , (56)1081

∇vg (v)|v=vn
= ∇vg (v | vn)

∣∣
v=vn

. (57)1082

Then, we are able to increase the value of the original function1083

from g(vn) to g(vn+1) by finding the point vn+1 which1084

maximizes the lower bound g(v|vn). Therefore, the success1085

of using the MM algorithm highly relies on the property of1086

the constructed lower bound.1087

In the following, we derive a tractable lower bound for1088

fk(v) which satisfies the above three conditions and can1089

successfully produce a closed-form solution. We first rewrite1090

fk(v) as1091

fk(v) = ln
(

1 +
vHBv
vHCkv

)
= − ln

(
vHCkv

vHCkv + vHBv

)
1092

= − ln
(

1− vHBv
vHCkv + vHBv

)
1093

= − ln
(

1− vHBv
tk

)
� fk(v, tk), (58)1094

where tk = vH(Ck + B)v > 0. Then, according to [36,1095

(14)] and the composition rule [40, (3.10)], fk(v, tk) is jointly1096

convex in v and tk. Therefore, given a point (vn, t
n
k ), we can1097

obtain a lower bound of fk(v, tk) by using its first-order1098

Taylor expansion, which automatically meets the three con-1099

ditions needed for MM algorithms. Specifically, we have1100

fk(v, tk)1101

≥ fk (vn, t
n
k ) +

∂fk(v)
∂vT

∣∣∣∣
v=vn

(v − vn)1102

+
∂fk(v)
∂vH

∣∣∣∣
v∗=v∗

n

(v∗ − v∗
n) +

∂fk(v)
∂tk

∣∣∣∣
tk=tn

k

(tk − tnk ) , 1103

(59) 1104

where ∂fk(v,tk)
∂vT = vHB

tk−vHBv , ∂fk(v,tk)
∂vH = vT BT

tk−vHBv , and 1105

∂fk(v,tk)
∂tk

= − vHBv
(tk−vHBv)

1
tk

. 1106

Substituting these three partial derivatives into (59) and 1107

using tk = vH(Ck + B)v and tnk = vH
n (Ck + B)vn, after 1108

some simplifications, we can obtain 1109

fk(v) ≥ const1k +2 Re
{
ωkvH

n Bv
}− ψkvH (Ck + B)v, 1110

(60) 1111

where const1k = fk (vn) − vH
n Bvn

vH
n Ckvn

, and ωk and ψk are 1112

defined in (30). Next, according to the inequality in [36, (26)] 1113

and the property that Ck +B � λmax (Ck + B) IN , we have 1114

vH (Ck + B)v 1115

≤ vHλmax (Ck + B) INv 1116

+ 2 Re
{
vH ((Ck + B)− λmax (Ck + B) IN )vn

}
1117

+vH
n (λmax (Ck + B) IN − (Ck + B))vn. (61) 1118

Substituting (61) into (60) and using the fact that 1119

vHλmax (Ck + B) INv = Nλmax (Ck + B), we can arrive 1120

at (29). 1121

APPENDIX G 1122

Under the MM algorithm framework, given a point vn, 1123

we want to construct a quadratic form lower bound f̃ (v | vn) 1124

of f̃ (v) as follows 1125

f̃(v) ≥ f̃ (v | vn) = f̃ (vn) + 2 Re
{
uH (v − vn)

}
1126

+ (v − vn)H M (v − vn) , (62) 1127

where u and M are two parameters to be decided. 1128

Since condition f̃(vn) = f̃ (vn | vn) is already satisfied, 1129

we next construct parameters u and M satisfying condi- 1130

tions (56) and (57). We first use condition (57) to design u. 1131

The differential of the left hand side of (62) at point vn with 1132

arbitrary increment dv = v − vn is 1133

df̃(v)
∣∣∣
v=vn

1134

= − 1
μ

∑
k

d
{
exp

{
−μ

(
constk +2 Re

{
(fn

k )H v
})}}∣∣∣∣

v=vn∑
k

exp
{
−μ

(
constk + 2 Re

{
(fn

k )H vn

})} 1135

=
∑

k

2 Re
{
lnk (fn

k)H dv
}
, (63) 1136

Q̂HQ̂ ∼ CWK

(
M,

β

δ + 1
ΥHH

1 H1Υ + ΩΥ2 +
σ2

τp
Υ2 +

βδ

δ + 1
HH

1 ΦHaNaH
NΦH1

)
. (49)

E

{(
Q̂HQ̂

)−1
}

=

(
β

δ+1ΥHH
1 H1Υ+ΩΥ2+ σ2

τpΥ
2+ βδ

δ+1H
H
1 ΦHaNaH

NΦH1

)−1

M −K . (50)
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where lnk is defined in (35). Next, the differential of the right1137

hand side of (62) at point vn is1138

df̃ (v | vn)
∣∣∣
v=vn

= 2 Re
{
uHdv

}
. (64)1139

To satisfy condition (57), we need
∑

k 2 Re
{
lnk (fn

k )H dv
}

=1140

2 Re
{
uHdv

}
, resulting in1141

u =
∑

k

lnk fn
k . (65)1142

Next, we aim to construct M using condition (56). Letting1143

v = vn + � (ṽ − vn), � ∈ [0, 1], and substituting it into (56),1144

we need1145

f̃ (vn + � (ṽ − vn))1146

≥ f̃ (vn) + 2�Re
{
uH (ṽ − vn)

}
1147

+ �2 (ṽ − vn)H M (ṽ − vn) (66)1148

to be satisfied for any � and any ṽ. Since we know that f̃ (v)1149

and f̃ (v | vn) have the same value and differential at point1150

vn, (56) can now be transformed to the condition that the1151

second-order derivative of the left hand side of (66) is no1152

smaller than that of the right hand side of (66) for any � ∈1153

[0, 1] and any ṽ [38].1154

Specifically, the second-order derivative of the right hand1155

side of (66) is given by (67), as shown at the bottom of the1156

page.1157

Then, we focus on the left hand side of (66). Its first-order1158

derivative is1159

∂

∂�
f̃ (vn + � (ṽ − vn))1160

=
∑

k

2 Re
{
un

k(�) (fn
k )H (ṽ − vn)

}
, (68)1161

where un
k (�) = exp{−μl̃k(�)}�

k

exp{−μl̃k(�)} , l̃k(�) =1162

constk +2 Re
{
(fn

k )H (vn + � (ṽ − vn))
}

, and ∂l̃k(�)
∂� =1163

2 Re
{

(fn
k )H (ṽ − vn)

}
. Then, the second-order derivative1164

can be calculated as follows1165

∂

∂�2
f̃ (vn + � (ṽ − vn))1166

1167

=
∑

k

2 Re
{
∂

∂�
{un

k (�)} (fn
k )H (ṽ − vn)

}
, (69)1168

where1169

∂un
k(�)
∂�

= −2μRe
{
un

k (�) (fn
k )H (ṽ − vn)

}
1170

+μun
k(�)

(∑
k

2 Re
{
un

k (�) (fn
k )H (ṽ − vn)

})
.1171

(70)1172

Substituting (70) into (69), we obtain the second-order deriv- 1173

ative as follows 1174

∂

∂�2
f̃ (vn + � (ṽ − vn)) 1175

= −μ
∑

k

un
k (�)

(
2 Re

{
(fn

k )H (ṽ − vn)
})2

1176

+μ

(∑
k

2 Re
{
un

k (�) (fn
k )H (ṽ − vn)

})2

. (71) 1177

Define t = ṽ− vn. (71) can be rewritten as a quadratic form 1178

of t, as follows 1179

∂
∂�2 f̃ (vn + � (ṽ − vn)) =

[
tH tT

]
W

[
t
t∗

]
, (72) 1180

where 1181

W = −μ
∑

k

un
k(�)

[
fn
k

(fn
k )∗

] [
fn
k

(fn
k )∗

]H

1182

+μ

[∑
k u

n
k (�)fn

k∑
k u

n
k (�) (fn

k )∗

] [∑
k u

n
k (�)fn

k∑
k u

n
k (�) (fn

k )∗

]H

. (73) 1183

Besides, we rewrite the second-order derivative in (67) as 1184

2 (ṽ − vn)H M (ṽ − vn) 1185

=
[
tH tT

] [M 0
0 MT

] [
t
t∗

]
. (74) 1186

To satisfy condition (56), according to (73), we can choose 1187

that M � λmin(W)IN , where 1188

λmin(W)
(e)

≥ −μ
∑

k

un
k(�)λmax

([
fn
k

(fn
k )∗

] [
fn
k

(fn
k )∗

]H
)

1189

(f)
= −μ

∑
k

un
k(�)

(
(fn

k )H fn
k + (fn

k )T (fn
k )∗

)
1190

= −2μ
∑

k

un
k (�) ‖fn

k ‖2
(g)

≥ −2μmax
k
‖fn

k ‖2 , 1191

(75) 1192

according to the following properties: (e) [51] : For Her- 1193

mitian matrix X and rank one Hermitian matrix T, we have 1194

λmin(X + T) ≥ λmin(X) + λmin(T) = λmin(X). (f) : If 1195

X is rank one, λmax (X) = Tr {X}. (g) : For non-negative 1196

vector [b1, b2, . . . , bn] and [c1, c2, . . . , cn], if ci ∈ (0, 1) and 1197∑n
i=1 ci = 1, then

∑n
i=1 cibi ≤

∑n
i=1 ci max1≤i≤n bi = 1198

max1≤i≤n bi. 1199

Based on (75), we can now construct M = 1200(
−2μmaxk ‖fn

k ‖2
)

IN . Substituting this M and u in (65) 1201

into (62) completes the proof. 1202

∂

∂�2

{
f̃ (vn) + 2�Re

{
uH (ṽ − vn)

}
+ �2 (ṽ − vn)H M (ṽ − vn)

}
= 2 (ṽ − vn)H M (ṽ − vn) . (67)
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